Dynamic Tensor Clustering

نویسندگان

  • Will Wei Sun
  • Lexin Li
چکیده

Dynamic tensor data are becoming prevalent in numerous applications. Existing tensor clustering methods either fail to account for the dynamic nature of the data, or are inapplicable to a general-order tensor. Also there is often a gap between statistical guarantee and computational efficiency for existing tensor clustering solutions. In this article, we aim to bridge this gap by proposing a new dynamic tensor clustering method, which takes into account both sparsity and fusion structures, and enjoys strong statistical guarantees as well as high computational efficiency. Our proposal is based upon a new structured tensor factorization that encourages both sparsity and smoothness in parameters along the specified tensor modes. Computationally, we develop a highly efficient optimization algorithm that benefits from substantial dimension reduction. In theory, we first establish a non-asymptotic error bound for the estimator from the structured tensor factorization. Built upon this error bound, we then derive the rate of convergence of the estimated cluster centers, and show that the estimated clusters recover the true cluster structures with a high probability. Moreover, our proposed method can be naturally extended to co-clustering of multiple modes of the tensor data. The efficacy of our approach is illustrated via simulations and a brain dynamic functional connectivity analysis from an Autism spectrum disorder study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization

So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...

متن کامل

Multi-View Subspace Clustering via Relaxed L1-Norm of Tensor Multi-Rank

In this paper, we address the multi-view subspace clustering problem. Our method utilize the circulant algebra for tensor, which is constructed by stacking the subspace representation matrices of different views and then shifting, to explore the high order correlations underlying multi-view data. By introducing a recently proposed tensor factorization, namely tensor-Singular Value Decomposition...

متن کامل

Robust Tensor Clustering with Non-Greedy Maximization

Tensors are increasingly common in several areas such as data mining, computer graphics, and computer vision. Tensor clustering is a fundamental tool for data analysis and pattern discovery. However, there usually exist outlying data points in realworld datasets, which will reduce the performance of clustering. This motivates us to develop a tensor clustering algorithm that is robust to the out...

متن کامل

1 0 Fe b 20 09 Approximation Algorithms for Bregman Co - clustering and Tensor Clustering ∗

In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 17], and tensor clustering [8, 32]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...

متن کامل

Robust Kernelized Multi-View Self-Representations for Clustering by Tensor Multi-Rank Minimization

Most recently, tensor-SVD is implemented on multi-view self-representation clustering and has achieved the promising results in many real-world applications such as face clustering, scene clustering and generic object clustering. However, tensor-SVD based multi-view self-representation clustering is proposed originally to solve the clustering problem in the multiple linear subspaces, leading to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017